Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Prof. Dr. Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Professor | American International University | Bangladesh

Prof. Dr. Muhammad Firoz Mridha, a researcher at the American International University–Bangladesh (AIUB), has established a strong scholarly profile in computer science with notable contributions to machine learning, data analytics, cybersecurity, IoT, and applied artificial intelligence. With 319 publications, over 4,629 citations, and an h-index of 33, his work demonstrates sustained academic productivity and global research impact. His studies often address practical and emerging challenges—such as intelligent decision-support systems, secure digital infrastructures, and data-driven solutions for healthcare and smart environments—positioning his contributions at the intersection of theoretical advancement and real-world application. Collaboration is a defining feature of his career, reflected in partnerships with 575 co-authors, enabling multidisciplinary knowledge exchange and strengthening international research networks. His work has supported technological development, digital inclusion, and innovation-oriented problem-solving, particularly in contexts where data-centric technologies can improve societal outcomes.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar, M. M., & Rahman, M. S. (2021). A comprehensive review on fake news detection with deep learning. IEEE Access, 9, 156151–156170.

Cited by: 297

2. Mridha, M. F., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M. R., & Watanobe, Y. (2021). Brain–computer interface: Advancement and challenges. Sensors, 21(17), 5746.

Cited by: 296

3. Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6, 100059.

Cited by: 271

4. Rayed, M. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, 101504.

Cited by: 227

5. Mridha, M. F., Lima, A. A., Nur, K., Das, S. C., Hasan, M., & Kabir, M. M. (2021). A survey of automatic text summarization: Progress, process and challenges. IEEE Access, 9, 156043–156070.

Cited by: 197

Prof. Dr. Muhammad Firoz Mridha’s research advances data-driven intelligence and secure digital systems, contributing to global technological innovation and societal problem-solving. His work supports scalable, real-world applications—particularly in developing regions—promoting inclusive, ethical, and sustainable digital transformation.

Leila Malihi | Knowledge Distillation | Research Excellence Award

Dr. Leila Malihi | Knowledge Distillation | Research Excellence Award

Research Assistant | Osnabrück University | Germany

Dr. Leila Malihi is an emerging scholar whose work advances the intersection of medical image analysis, digital health technologies, and clinical decision-support systems. With a developing portfolio of 10 scholarly publications, 88 citations and 5 h-index her research demonstrates both growing influence and clear relevance to contemporary healthcare challenges. Her primary focus lies in applying machine learning and computer-vision techniques to improve diagnostic accuracy, particularly in the context of wound analysis and healing-complication detection, including notable contributions to the automatic classification of wound images and the optimisation of algorithms to detect maceration—an area critical for improving patient care, reducing clinical workload, and supporting early intervention. Disseminated through open-access venues, this work reflects a strong commitment to practical, clinically meaningful impact. Malihi’s collaborative record, involving more than 20 co-authors across computer science, biomedical engineering, and clinical research, highlights her active engagement in interdisciplinary teams that blend methodological rigour with clinical insight, enhancing the translational quality of her contributions. Despite being in an early career stage, she has already established measurable academic impact through consistent citation uptake and growing recognition within the health-technology community. Her research carries significant societal value by enabling more accurate and automated assessment of wound healing, supporting the development of scalable healthcare solutions, strengthening telemedicine workflows, and ultimately contributing to improved patient outcomes, particularly in resource-limited environments.

Profile: Scopus

Featured Publication

1. Dührkoop, E., Malihi, L., Erfurt-Berge, C., Heidemann, G., Przysucha, M., Busch, D., & Hübner, U. H. (2024). Automatic Classification of Wound Images Showing Healing Complications: Towards an Optimised Approach for Detecting Maceration. In R. Rohrig et al. (Eds.), German Medical Data Sciences 2024.
Cited by: 2

Dr. Malihi’s research advances intelligent medical-image analysis tools that strengthen diagnostic precision and support clinicians in delivering timely, data-driven care. Her vision is to develop globally accessible digital-health solutions that reduce healthcare disparities and promote more efficient, technology-enhanced clinical workflows.

Chao Li | Machine Learning | Best Researcher Award

Assoc. Prof. Dr. Chao Li | Machine Learning | Best Researcher Award

Department Chair | Chengdu University of Technology | China

Assoc. Prof. Dr. Chao Li of Chengdu University of Technology is an expert in geophysical signal processing, seismic data reconstruction, and intelligent subsurface imaging, with a focus on integrating machine learning and advanced computational techniques into geoscience applications. He has authored 31 peer-reviewed publications cited 425 times, reflecting a strong research impact and an h-index of 12. His work includes the development of Generative Adversarial Networks for seismic reconstruction, non-subsampled contourlet transforms for low-amplitude structure detection, and hybrid neural architectures for source deblending, addressing critical challenges in exploration geophysics and subsurface data interpretation. Collaborating with over 50 co-authors, Dr. Li demonstrates a commitment to interdisciplinary and international research, bridging academia and industry. His contributions enhance the accuracy, efficiency, and sustainability of seismic exploration, providing tools for more reliable resource evaluation and environmental monitoring. By combining computational intelligence with applied geophysics, Dr. Li’s research promotes innovation in energy exploration, environmental stewardship, and global geoscience advancement, making significant scientific, industrial, and societal impacts.

Profile: Scopus

Featured Publications

1. Ke, C.-F., Zu, S.-H., Cao, J.-X., Jiang, X.-D., Li, C., & Liu, X.-Y. (2024). A hybrid WUDT‑NAFnet for simultaneous source data deblending. Petroleum Science, 21(3), 1649‑1659.
Cited by: 1

2. Low‑amplitude structure recognition method based on non‑subsampled contourlet transform. Petroleum Science.(2024)
Cited by: 1

3. Seismic Data Reconstruction via Least‑Squares Generative Adversarial Networks With Inverse Interpolation. IEEE Transactions on Geoscience and Remote Sensing.(2025)
Cited by: 1

Assoc. Prof. Dr. Chao Li’s pioneering work at the interface of geophysics and artificial intelligence is reshaping the future of seismic data interpretation, enabling smarter, data-driven exploration. His vision emphasizes leveraging AI-powered geoscience solutions to advance sustainable resource utilization and strengthen global resilience in energy and environmental systems.

Tianyuan Liu | Machine Learning | Best Researcher Award

Assoc. Prof. Dr. Tianyuan Liu | Machine Learning | Best Researcher Award

Master’s Supervisor | Donghua University | China

Assoc. Prof. Dr. Tianyuan Liu, affiliated with Donghua University, Shanghai, China, is a distinguished researcher specializing in industrial intelligence, human-centric manufacturing, and vision-based quality inspection. With 43 publications, 1,103 citations, and an h-index of 17, Dr. Liu’s work reflects significant academic impact and steady scholarly growth in intelligent industrial systems. His research integrates cognitive computing, deep learning, and large language models to enhance manufacturing precision, reliability, and adaptability. Notably, his 2025 article “Analysis of causes of welding defects in bridge weathering steel based on large language models” in the Journal of Industrial Information Integration demonstrates his pioneering approach to applying AI-driven diagnostic systems in structural materials engineering. Another major contribution, “Causal deep learning for explainable vision-based quality inspection under visual interference” published in Journal of Intelligent Manufacturing, advances explainable AI (XAI) frameworks for real-time industrial inspection, ensuring transparency and accuracy in automated decision-making. His review, “Towards cognition-augmented human-centric assembly: A visual computation perspective”, underscores his vision for augmenting human intelligence with computational cognition to achieve collaborative, efficient, and sustainable manufacturing systems. Furthermore, his book chapter “Industrial Intelligence: Methods and Applications” provides a comprehensive view of the synergy between AI and industrial processes, shaping the academic and applied discourse in smart factories. Assoc. Prof. Dr. Liu’s contributions collectively enhance the fusion of AI, cognition, and industrial engineering, driving forward the next generation of intelligent, explainable, and human-oriented manufacturing ecosystems.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227.
Cited by: 182.

2. Zhou, B., Bao, J., Li, J., Lu, Y., Liu, T., & Zhang, Q. (2021). A novel knowledge graph-based optimization approach for resource allocation in discrete manufacturing workshops. Robotics and Computer-Integrated Manufacturing, 71, 102160.
Cited by: 152.

3. Zhou, B., Shen, X., Lu, Y., Li, X., Hua, B., Liu, T., & Bao, J. (2023). Semantic-aware event link reasoning over industrial knowledge graph embedding time series data. International Journal of Production Research, 61(12), 4117–4134.
Cited by: 123.

4. Zhou, B., Li, X., Liu, T., Xu, K., Liu, W., & Bao, J. (2024). CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. Advanced Engineering Informatics, 59, 102333.
Cited by: 114.

5. Liu, T., Bao, J., Wang, J., & Zhang, Y. (2018). A hybrid CNN–LSTM algorithm for online defect recognition of CO₂ welding. Sensors, 18(12), 4369.
Cited by: 105.

Assoc. Prof. Dr. Tianyuan Liu’s research bridges artificial intelligence and industrial engineering, advancing smart, explainable, and human-centric manufacturing solutions that empower global industry transformation.