Abhilash Kancharla | Deep Learning | Editorial Board Member

Dr. Abhilash Kancharla | Deep Learning | Editorial Board Member

The University of Tampa | United States

Dr. Abhilash Kancharla is a researcher at the University of Tampa specializing in advanced computing and next-generation digital technologies, with expertise in edge computing, 6G networks, blockchain-based security and privacy, quantum machine learning, neural-inspired algorithms, and computational modeling of nanomaterials. He has published 23 peer-reviewed research articles, which have received 50 citations, and holds an h-index of 4, reflecting consistent academic impact in emerging interdisciplinary fields. His work is particularly notable for integrating intelligent learning models with secure communication architectures for future wireless networks, as well as applying computational intelligence to the analysis of self-healing materials. Through collaborations with 14 co-authors, he actively contributes to international research networks, fostering cross-disciplinary knowledge exchange. The broader social and technological impact of his research supports the development of secure, intelligent, and sustainable digital infrastructures, with relevance to future communication systems, smart technologies, and advanced material design.

Citation Metrics (Scopus)

50
40
30
20
10
0

Citations

50

Documents

23

h-index

4

Citations

Documents

h-index


View Scopus Profile
View ORCID Profile
View Google Scholar Profile

Top 5 Featured Publications

Chao Li | Machine Learning | Best Researcher Award

Assoc. Prof. Dr. Chao Li | Machine Learning | Best Researcher Award

Department Chair | Chengdu University of Technology | China

Assoc. Prof. Dr. Chao Li of Chengdu University of Technology is an expert in geophysical signal processing, seismic data reconstruction, and intelligent subsurface imaging, with a focus on integrating machine learning and advanced computational techniques into geoscience applications. He has authored 31 peer-reviewed publications cited 425 times, reflecting a strong research impact and an h-index of 12. His work includes the development of Generative Adversarial Networks for seismic reconstruction, non-subsampled contourlet transforms for low-amplitude structure detection, and hybrid neural architectures for source deblending, addressing critical challenges in exploration geophysics and subsurface data interpretation. Collaborating with over 50 co-authors, Dr. Li demonstrates a commitment to interdisciplinary and international research, bridging academia and industry. His contributions enhance the accuracy, efficiency, and sustainability of seismic exploration, providing tools for more reliable resource evaluation and environmental monitoring. By combining computational intelligence with applied geophysics, Dr. Li’s research promotes innovation in energy exploration, environmental stewardship, and global geoscience advancement, making significant scientific, industrial, and societal impacts.

Profile: Scopus

Featured Publications

1. Ke, C.-F., Zu, S.-H., Cao, J.-X., Jiang, X.-D., Li, C., & Liu, X.-Y. (2024). A hybrid WUDT‑NAFnet for simultaneous source data deblending. Petroleum Science, 21(3), 1649‑1659.
Cited by: 1

2. Low‑amplitude structure recognition method based on non‑subsampled contourlet transform. Petroleum Science.(2024)
Cited by: 1

3. Seismic Data Reconstruction via Least‑Squares Generative Adversarial Networks With Inverse Interpolation. IEEE Transactions on Geoscience and Remote Sensing.(2025)
Cited by: 1

Assoc. Prof. Dr. Chao Li’s pioneering work at the interface of geophysics and artificial intelligence is reshaping the future of seismic data interpretation, enabling smarter, data-driven exploration. His vision emphasizes leveraging AI-powered geoscience solutions to advance sustainable resource utilization and strengthen global resilience in energy and environmental systems.

Tianyuan Liu | Machine Learning | Best Researcher Award

Assoc. Prof. Dr. Tianyuan Liu | Machine Learning | Best Researcher Award

Master’s Supervisor | Donghua University | China

Assoc. Prof. Dr. Tianyuan Liu, affiliated with Donghua University, Shanghai, China, is a distinguished researcher specializing in industrial intelligence, human-centric manufacturing, and vision-based quality inspection. With 43 publications, 1,103 citations, and an h-index of 17, Dr. Liu’s work reflects significant academic impact and steady scholarly growth in intelligent industrial systems. His research integrates cognitive computing, deep learning, and large language models to enhance manufacturing precision, reliability, and adaptability. Notably, his 2025 article “Analysis of causes of welding defects in bridge weathering steel based on large language models” in the Journal of Industrial Information Integration demonstrates his pioneering approach to applying AI-driven diagnostic systems in structural materials engineering. Another major contribution, “Causal deep learning for explainable vision-based quality inspection under visual interference” published in Journal of Intelligent Manufacturing, advances explainable AI (XAI) frameworks for real-time industrial inspection, ensuring transparency and accuracy in automated decision-making. His review, “Towards cognition-augmented human-centric assembly: A visual computation perspective”, underscores his vision for augmenting human intelligence with computational cognition to achieve collaborative, efficient, and sustainable manufacturing systems. Furthermore, his book chapter “Industrial Intelligence: Methods and Applications” provides a comprehensive view of the synergy between AI and industrial processes, shaping the academic and applied discourse in smart factories. Assoc. Prof. Dr. Liu’s contributions collectively enhance the fusion of AI, cognition, and industrial engineering, driving forward the next generation of intelligent, explainable, and human-oriented manufacturing ecosystems.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., & Liu, S. (2022). A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics and Computer-Integrated Manufacturing, 73, 102227.
Cited by: 182.

2. Zhou, B., Bao, J., Li, J., Lu, Y., Liu, T., & Zhang, Q. (2021). A novel knowledge graph-based optimization approach for resource allocation in discrete manufacturing workshops. Robotics and Computer-Integrated Manufacturing, 71, 102160.
Cited by: 152.

3. Zhou, B., Shen, X., Lu, Y., Li, X., Hua, B., Liu, T., & Bao, J. (2023). Semantic-aware event link reasoning over industrial knowledge graph embedding time series data. International Journal of Production Research, 61(12), 4117–4134.
Cited by: 123.

4. Zhou, B., Li, X., Liu, T., Xu, K., Liu, W., & Bao, J. (2024). CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. Advanced Engineering Informatics, 59, 102333.
Cited by: 114.

5. Liu, T., Bao, J., Wang, J., & Zhang, Y. (2018). A hybrid CNN–LSTM algorithm for online defect recognition of CO₂ welding. Sensors, 18(12), 4369.
Cited by: 105.

Assoc. Prof. Dr. Tianyuan Liu’s research bridges artificial intelligence and industrial engineering, advancing smart, explainable, and human-centric manufacturing solutions that empower global industry transformation.