Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Prof. Dr. Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Professor | American International University | Bangladesh

Prof. Dr. Muhammad Firoz Mridha, a researcher at the American International University–Bangladesh (AIUB), has established a strong scholarly profile in computer science with notable contributions to machine learning, data analytics, cybersecurity, IoT, and applied artificial intelligence. With 319 publications, over 4,629 citations, and an h-index of 33, his work demonstrates sustained academic productivity and global research impact. His studies often address practical and emerging challenges—such as intelligent decision-support systems, secure digital infrastructures, and data-driven solutions for healthcare and smart environments—positioning his contributions at the intersection of theoretical advancement and real-world application. Collaboration is a defining feature of his career, reflected in partnerships with 575 co-authors, enabling multidisciplinary knowledge exchange and strengthening international research networks. His work has supported technological development, digital inclusion, and innovation-oriented problem-solving, particularly in contexts where data-centric technologies can improve societal outcomes.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar, M. M., & Rahman, M. S. (2021). A comprehensive review on fake news detection with deep learning. IEEE Access, 9, 156151–156170.

Cited by: 297

2. Mridha, M. F., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M. R., & Watanobe, Y. (2021). Brain–computer interface: Advancement and challenges. Sensors, 21(17), 5746.

Cited by: 296

3. Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6, 100059.

Cited by: 271

4. Rayed, M. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, 101504.

Cited by: 227

5. Mridha, M. F., Lima, A. A., Nur, K., Das, S. C., Hasan, M., & Kabir, M. M. (2021). A survey of automatic text summarization: Progress, process and challenges. IEEE Access, 9, 156043–156070.

Cited by: 197

Prof. Dr. Muhammad Firoz Mridha’s research advances data-driven intelligence and secure digital systems, contributing to global technological innovation and societal problem-solving. His work supports scalable, real-world applications—particularly in developing regions—promoting inclusive, ethical, and sustainable digital transformation.

Amirhossein Ghasemi Abyaneh | Machine Learning | Best Researcher Award

Mr. Amirhossein Ghasemi Abyaneh | Machine Learning | Best Researcher Award

Researcher | Kharazmi University | Iran

Mr. Amirhossein Ghasemi Abyaneh is an emerging scholar in the field of artificial intelligence applications in sustainable supply chains, affiliated with Kharazmi University, Tehran, Iran. His academic endeavors focus on integrating advanced data analytics, optimization techniques, and machine learning frameworks to enhance decision-making, efficiency, and sustainability across complex supply chain networks. With 3 published research papers and an h-index of 1, Mr. Abyaneh has begun establishing a scholarly footprint that bridges technology-driven innovation with environmental and operational resilience. His work, including the open-access article “An Analytical Review of Artificial Intelligence Applications in Sustainable Supply Chains” (2025, Supply Chain Analytics), provides critical insights into the evolving intersection of AI and sustainability, emphasizing how digital intelligence can optimize resource utilization, reduce carbon footprints, and strengthen circular economy practices. Having received citations from international scholars, he actively contributes to the global academic dialogue on sustainable logistics, smart manufacturing, and responsible innovation. Mr. Abyaneh’s collaborative research network includes seven co-authors from diverse academic and institutional backgrounds, reflecting a strong interdisciplinary approach that combines engineering, data science, and environmental management. His studies aim to foster both theoretical advancement and practical applicability, offering valuable implications for policymakers, corporations, and researchers seeking to transition toward greener, data-driven supply chains. Beyond academic impact, his contributions align with global sustainability goals, promoting knowledge transfer, digital equity, and responsible AI adoption for societal benefit.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Sharbati, A., Movahed, A. B., Abyaneh, A. G., & Rahmanian, F. (2025). Risk assessment of healthcare systems using the FMEA method: Medication management process. Journal of Future Digital Optimization, 1(1), 71–85.
Cited by: 4

2. Abyaneh, A. G., Movahed, A. B., Abyari, A., Nodehfarahani, A., & Khakbazan, M. (2025). Evaluating the RFID technology in Costco Company: A focus on logistics and supply chain management. Applied Innovations in Industrial Management, 5(2), 34–51.
Cited by: 2

3. Movahed, A. B., Abyaneh, A. G., Khakbazan, M., & Movahed, A. B. (2025). Smart economy cybersecurity: AI-driven risk management in digital markets. In Dynamic and Safe Economy in the Age of Smart Technologies (pp. 49–72).
Cited by: 2

4. Abyaneh, A. G., Ghanbari, H., Mohammadi, E., Amirsahami, A., & Khakbazan, M. (2025). An analytical review of artificial intelligence applications in sustainable supply chains. Supply Chain Analytics, 100173.
Cited by: 1

5. Abyaneh, A. G., Khakbazan, M., & Movahed, A. B. (2026). Artificial intelligence in digital marketing: Trends, challenges, and strategic opportunities. In Improving Consumer Engagement in Digital Marketing Through Cognitive AI (pp. 225–260)

Mr. Amirhossein Ghasemi Abyaneh envisions a future where artificial intelligence empowers sustainable industrial transformation, enabling supply chains to become more adaptive, transparent, and environmentally responsible. His research advances the integration of smart analytics and sustainability principles, fostering innovation that supports global climate resilience and ethical technological progress.