Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Prof. Dr. Muhammad Firoz Mridha | Machine Learning | Best Researcher Award

Professor | American International University | Bangladesh

Prof. Dr. Muhammad Firoz Mridha, a researcher at the American International University–Bangladesh (AIUB), has established a strong scholarly profile in computer science with notable contributions to machine learning, data analytics, cybersecurity, IoT, and applied artificial intelligence. With 319 publications, over 4,629 citations, and an h-index of 33, his work demonstrates sustained academic productivity and global research impact. His studies often address practical and emerging challenges—such as intelligent decision-support systems, secure digital infrastructures, and data-driven solutions for healthcare and smart environments—positioning his contributions at the intersection of theoretical advancement and real-world application. Collaboration is a defining feature of his career, reflected in partnerships with 575 co-authors, enabling multidisciplinary knowledge exchange and strengthening international research networks. His work has supported technological development, digital inclusion, and innovation-oriented problem-solving, particularly in contexts where data-centric technologies can improve societal outcomes.

Profiles: Scopus | ORCID | Google Scholar

Featured Publications

1. Mridha, M. F., Keya, A. J., Hamid, M. A., Monowar, M. M., & Rahman, M. S. (2021). A comprehensive review on fake news detection with deep learning. IEEE Access, 9, 156151–156170.

Cited by: 297

2. Mridha, M. F., Das, S. C., Kabir, M. M., Lima, A. A., Islam, M. R., & Watanobe, Y. (2021). Brain–computer interface: Advancement and challenges. Sensors, 21(17), 5746.

Cited by: 296

3. Jim, J. R., Talukder, M. A. R., Malakar, P., Kabir, M. M., Nur, K., & Mridha, M. F. (2024). Recent advancements and challenges of NLP-based sentiment analysis: A state-of-the-art review. Natural Language Processing Journal, 6, 100059.

Cited by: 271

4. Rayed, M. E., Islam, S. M. S., Niha, S. I., Jim, J. R., Kabir, M. M., & Mridha, M. F. (2024). Deep learning for medical image segmentation: State-of-the-art advancements and challenges. Informatics in Medicine Unlocked, 47, 101504.

Cited by: 227

5. Mridha, M. F., Lima, A. A., Nur, K., Das, S. C., Hasan, M., & Kabir, M. M. (2021). A survey of automatic text summarization: Progress, process and challenges. IEEE Access, 9, 156043–156070.

Cited by: 197

Prof. Dr. Muhammad Firoz Mridha’s research advances data-driven intelligence and secure digital systems, contributing to global technological innovation and societal problem-solving. His work supports scalable, real-world applications—particularly in developing regions—promoting inclusive, ethical, and sustainable digital transformation.

Leila Malihi | Knowledge Distillation | Research Excellence Award

Dr. Leila Malihi | Knowledge Distillation | Research Excellence Award

Research Assistant | Osnabrück University | Germany

Dr. Leila Malihi is an emerging scholar whose work advances the intersection of medical image analysis, digital health technologies, and clinical decision-support systems. With a developing portfolio of 10 scholarly publications, 88 citations and 5 h-index her research demonstrates both growing influence and clear relevance to contemporary healthcare challenges. Her primary focus lies in applying machine learning and computer-vision techniques to improve diagnostic accuracy, particularly in the context of wound analysis and healing-complication detection, including notable contributions to the automatic classification of wound images and the optimisation of algorithms to detect maceration—an area critical for improving patient care, reducing clinical workload, and supporting early intervention. Disseminated through open-access venues, this work reflects a strong commitment to practical, clinically meaningful impact. Malihi’s collaborative record, involving more than 20 co-authors across computer science, biomedical engineering, and clinical research, highlights her active engagement in interdisciplinary teams that blend methodological rigour with clinical insight, enhancing the translational quality of her contributions. Despite being in an early career stage, she has already established measurable academic impact through consistent citation uptake and growing recognition within the health-technology community. Her research carries significant societal value by enabling more accurate and automated assessment of wound healing, supporting the development of scalable healthcare solutions, strengthening telemedicine workflows, and ultimately contributing to improved patient outcomes, particularly in resource-limited environments.

Profile: Scopus

Featured Publication

1. Dührkoop, E., Malihi, L., Erfurt-Berge, C., Heidemann, G., Przysucha, M., Busch, D., & Hübner, U. H. (2024). Automatic Classification of Wound Images Showing Healing Complications: Towards an Optimised Approach for Detecting Maceration. In R. Rohrig et al. (Eds.), German Medical Data Sciences 2024.
Cited by: 2

Dr. Malihi’s research advances intelligent medical-image analysis tools that strengthen diagnostic precision and support clinicians in delivering timely, data-driven care. Her vision is to develop globally accessible digital-health solutions that reduce healthcare disparities and promote more efficient, technology-enhanced clinical workflows.