Amin Najafi | Robotics and Automation | Best Researcher Award

Mr. Amin Najafi | Robotics and Automation | Best Researcher Award

PhD candidate at University of Zanjan, Iran.

Amin Najafi is a researcher specializing in advanced fault-tolerant control, robotics, and intelligent transportation systems. His expertise lies in designing resilient control algorithms for UAVs, MAGLEV trains, and autonomous guidance systems. Through a strong portfolio of high-quality publications, Najafi has contributed significantly to enhancing the stability, safety, and performance of robotic systems operating under uncertain and fault-prone conditions. His work in adaptive barrier sliding mode control and finite-time stabilization has been widely recognized for bridging theoretical advancements with practical applications. Najafi’s research has appeared in leading journals, including IEEE Transactions on Transportation Electrification, Mathematics, ISA Transactions, and the Journal of Vibration and Control. Beyond research, he actively contributes to the scientific community through peer-review engagements across prestigious journals. His growing influence demonstrates his commitment to advancing robust, intelligent, and reliable autonomous systems, making him a promising candidate for recognition in robotics and automation research.

Professional Profile

Google Scholar | Scopus | ORCID

Education

Amin Najafi’s academic training has been grounded in control engineering, robotics, and automation. His education equipped him with advanced knowledge in nonlinear control, adaptive systems, and fault-tolerant design, laying a strong foundation for tackling complex challenges in autonomous platforms. Building on this foundation, Najafi engaged deeply with theories of stability, guidance, and fault diagnosis while also exploring practical aspects of UAVs and intelligent transportation. His progression through academic programs allowed him to develop both analytical rigor and applied research capabilities. The interdisciplinary nature of his training helped him connect mathematics, control theory, and engineering applications, which is reflected in his publications that combine theoretical robustness with engineering relevance. Najafi’s educational journey reflects a balance of theory and practice, giving him the ability to produce impactful work that speaks to both the academic community and the broader engineering industry in robotics and automation.

Experience

Amin Najafi has developed his career around solving critical problems in robotics, automation, and transportation electrification. His research experience includes designing innovative fault-tolerant controllers for quadrotor UAVs, advancing resilient strategies for MAGLEV train systems, and contributing to aerospace and defense-related guidance systems. His international collaborations with researchers such as S. Mobayen, A. Fekih, and L. Fridman demonstrate his ability to work within diverse, high-caliber teams. Najafi has also built strong credentials as a peer reviewer, having reviewed more than 60 manuscripts for prestigious journals including IEEE Transactions on Transportation Electrification, IEEE Access, and the Asian Journal of Control. This dual role as an author and reviewer highlights both his subject matter expertise and his standing in the global robotics and control community. Through his experience, he has consistently contributed to advancing autonomous and fault-resilient systems, ensuring his research holds both academic and applied significance.

Research Focus

Najafi’s research is anchored in fault-tolerant control, nonlinear dynamics, and resilient robotics. His primary focus lies in developing adaptive barrier sliding mode controllers, finite-time stabilization strategies, and robust diagnosis methods for actuator faults. UAVs represent a central application in his portfolio, where he has addressed actuator reliability, real-time guidance, and performance optimization under uncertain conditions. Beyond UAVs, he has extended his contributions to MAGLEV trains and interceptor-target systems, demonstrating the versatility of his control strategies. His work is characterized by integrating theoretical rigor, such as linear matrix inequality approaches, with real-world engineering challenges, making his contributions impactful across multiple domains. The broader vision of his research is to enable safe, intelligent, and adaptive robotic systems capable of operating in dynamic and fault-prone environments. By combining control theory with automation and robotics, Najafi continues to advance the frontiers of resilient and intelligent autonomous technologies.

Publication Top Notes

Title: Adaptive Barrier Fast Terminal Sliding Mode Actuator Fault-Tolerant Control Approach for Quadrotor UAVs
Authors: A. Najafi, M.T. Vu, S. Mobayen, J.H. Asad, A. Fekih
Journal: Mathematics.
Citations: 51
Summary: Proposes an adaptive barrier fast terminal sliding mode controller for quadrotor UAVs. Ensures finite-time stability, fault tolerance, and resilience against actuator faults with validated simulations.

Title: Design of Linear Matrix Inequality-Based Adaptive Barrier Global Sliding Mode Fault-Tolerant Control for Uncertain Systems with Faulty Actuators
Authors: K. Naseri, M.T. Vu, S. Mobayen, A. Najafi, A. Fekih
Journal: Mathematics.
Citations: 22
Summary: Introduces an LMI-based adaptive barrier global sliding mode controller. Provides robust stability and effective fault management in uncertain nonlinear systems.

Title: Robust Adaptive Fault-Tolerant Control for MAGLEV Train Systems: A Non-Singular Finite-Time Approach
Authors: A. Najafi, S. Mobayen, S.H. Rouhani, Z. Mokhtare, A. Jalilvand, L. Fridman, et al.
Journal: IEEE Transactions on Transportation Electrification.
Citations: 3
Summary: Develops a finite-time robust adaptive controller for MAGLEV trains. Enhances fault tolerance, passenger safety, and system robustness under disturbances.

Title: Multiple Actuator Fault Diagnosis Based on Parity Space for Quadrotor System
Authors: A. Najafi, D. Bustan
Journal: Journal of Aeronautical Engineering (JOAE).
Citations: 2
Summary: Presents a parity-space-based approach to detect and isolate multiple actuator faults in quadrotors, ensuring reliable UAV performance.

Title: Design of Adaptive Barrier Function-Based Backstepping Finite-Time Guidance Control for Interceptor-Target Systems
Authors: Z. Mokhtare, M.A. Sepestanki, S. Mobayen, A. Najafi, W. Assawinchaichote, et al.
Journal: Journal of Vibration and Control.
Citations: –
Summary: Proposes a backstepping control method with adaptive barrier functions for interceptor-target systems. Guarantees finite-time convergence and robust guidance under uncertainties.

Conclusion

Amin Najafi demonstrates strong potential and achievement in fault-tolerant control systems for UAVs and transportation applications, with impactful publications, innovative methodologies, and active engagement in peer review. While there is scope for growth in terms of citation impact and broader collaborations, his research contributions are highly relevant to the advancement of resilient and intelligent autonomous systems. He can be considered a suitable and promising candidate for the Best Researcher Award, particularly within the subject category of Control Systems, UAVs, and Intelligent Transportation.